ms.r Asian Journal of Applied Science and Technology (AJAST)

EXCELLENCE THROUGH RESEARCH: Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

Onu Fergus Uchenna, Chizoba Chioma Esther®", Aniji Ifesinachi Veronica®, Elechi Emmanuel Obashi*, Igwe Benedeth®, Ezennorom
Edmund® & Ajuka Gabriel Elechi’

L245TComputer Science Department, Ebonyi State University, Nigeria. *Computer Science Department, Alex Ekwueme Ndufu Ikwo, > Cc f
Nigeria. *Computer Science Department, Madonna University, Nigeria. Email: chiomaestherchizoba@gmail.com” ’ rossre

DOI: https://doi.org/10.38177/ajast.2025.9401

Copyright © 2025 Onu Fergus Uchenna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

1. Introduction

Software Development, being a process of creating computer programs to perform various tasks, is a dynamic and
ever-growing field that has transformed the way we live, do things and communicate Mitzi (2023). From the early
days of computing to this present era, software development has come a long way. Technological advancement,
changing needs, growing complexity of digital world and the continues quest for more efficient, maintainable and
scalable software gave rise to Object Oriented Programming (OOP) paradigm as claimed by Fernando et al. (2003).
Object oriented programming organizes codes around objects, i.e. self- contained units that combine data
(attributes) and behaviours (Methods). It emphasizes the design and interaction of objects rather than the sequential
execution of functions using four core principles — Encapsulation, Inheritance, Polymorphism and Abstraction.

However, just like the computer science community has shown increasing interest in the Object-Oriented
Programming, so also has the Artificial Intelligence (Al) community shown interest. This can be shown by many
object-oriented extensions to conventional Artificial Intelligence (Al) programming languages such as LISP,
PROLOG etc. Object oriented designs offer a blue print for developing a software system that are both modular and
scalable. By encapsulating data and behaviour into cohesive units known as objects, object-oriented programming
facilitates a level of abstraction that can significantly simplify the complexity inherent in Al systems. This approach
aligns seamlessly with the needs of Artificial Intelligence agent development where modularity and flexibility is
paramount (Sherman (1990)).

ISSN: 2456-883X OPEN @ ACCESS

12

AST Asian Journal of Applied Science and Technology (AJAST)

EXCELLENCE THROUGH RESEARCH \Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

OORP has transformed the way we analyze, design, code and maintain software systems. Its ability to encapsulate
data and behaviour within objects, foster code reusability through inheritance and polymorphism and provide a
modular approach to software design has been helpful in tackling the complexities of modern-day programming

challenges.

Artificial intelligence is a branch of computer science that aims to create machines or computer software systems
that can perform tasks that typically require human intelligence such as vision perception, speech, object and image
recognition, decision-making, natural language understanding and translation, learning from experience etc. It
involves creating computer systems that can mimic or simulate human cognitive abilities. John McCarthy, one of
the founders of Artificial Intelligence Research, as in Sakshi et al. (2022), once defined the field of Artificial
intelligence as getting a computer to do things that when done by human are said to involve intelligence. McCarthy
further stated that Artificial Intelligence is the science and engineering of making intelligent machines, especially
intelligent computer programs. Laskowski et al. (2023) also saw Artificial Intelligence as simulation of human
intelligence processes by machine (which is computer system). Copeland (2024) also defines Artificial Intelligence
as the ability of a digital computer or computer-controlled robot to perform tasks commonly associated with
intelligent beings. Artificial intelligence is accomplished by studying how the human brain thinks, and how humans

learn, decide and work while trying to solve a problem Sakshi et al. (2022).

However, software development has come a long way with frequent leaps in technology. Software controls our
lives - from mobile apps to Artificial Intelligence which we can’t live without. According to Rusell & Norvig
(2018), the on-going challenges of how to make system software scalable yet intelligent is being addressed by
integrating object-oriented programming and Atrtificial intelligence. Wolfgang (2017), Korzeniowski & Goczyla
(2019), Onu, et al. (2023), and Laskowski & Tuccei (2023), agreeing to this stated that it is becoming clear that
integration of object-oriented programming and Artificial Intelligence is poised to redefine how we develop
systems. They maintain that Integration of object-oriented programming and Artificial intelligence in software
development enhances the development of intelligent systems by leveraging the modularity, scalability and
reusability of object-oriented design. According to Nil (1998) a truly autonomous system should be able to operate

in any environment.

Also, Eduardo L. (2025), Batarseh et al. (2021) and Katari S. (2025) made a review and agreed that integration of
object-oriented programming and Al enhances software development. They maintained that the combination of
Acrtificial Intelligence and Object-Oriented Programming is poised to revolutionize system development, with Al
adding intelligence and flexibility to traditionally rigid systems. This is already reshaping various sectors like
e-commerce, healthcare, and other critical industries, with Al-powered systems demonstrating the ability to learn,
adapt and evolve. They summarized the Impact of Al and Object-Oriented Integration to include: increased

efficiency, improved functionality, improved user experience and better decisions.

This study explores how integrating Object-Oriented programming and Artificial Intelligence has helped in

advancing the frontiers of software development. The integration delivers the following objectives:

a. Enhanced software efficiency and automation.

ISSN: 2456-883X OPEN @ ACCESS

2
AST

EXCELLENCE THROUGH RESEARCH \Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

Asian Journal of Applied Science and Technology (AJAST)

b. Improved the software quality.

c. Personalized software user experience.

d. Smarter and more capable software.

e. Increased software scalability and adaptability.

f. Development of a data driven decision making software.
772, Literature Review

In this section, we present a review of papers that are more related to this study. All the papers reviewed agreed that
for a programming language to act as object-oriented, it must support some basic concepts which include; Class and
Obiject: Classes are template for creating objects. Objects are instance of classes. Encapsulation: Encapsulation,
also known as data hiding is a mechanism in OOP that binds function and data together in one compact form known

as class.

Inheritance: This is a mechanism of driving a new class from the earlier existing class. The new class inherits the
features of the old class. The old class and new class is called base — derived class, parent — child class or super —sub
class. Polymorphism: Polymorphism in object-oriented programming means more than one form or many forms. It
is a mechanism that provides a way for an entity to behave in more than one form or in many forms. Abstraction:
Abstraction is a mechanism which allows for representation of only essential features which are of significant
importance and hiding the unimportant details. Abstraction hides implementation details, making the system easier
to understand and maintain. Dynamic Binding: Binding means linking. Dynamic binding is a mechanism that links
a function definition to a function call. Binding is of 2 types — static and dynamic binding. Static binding is when
linking is done at compile time while dynamic binding occurs if linking is done at run time or during execution.
Message passing: Objects communicate with each other by passing messages to each other. A message contains the
name of a member function and the message to pass. Message passing here means calling the methods and passing

parameters.

The evolution of object oriented programming languages is captured pictorially in the figure 1.

, N , ~ , N
Il \ ‘I—----------;\ Il \
[V11 Monolithic 1 '_-;--d- 'I"‘I:
. roceaural
:: Machine 1t 1] Approach ' ! | Approach !
(R} 1
:: Languages I -p ! Ly —p ! "
' o1y Assembly 1y U FORTRANand
] 1 : ;1 andBASIC | : 11 COBOL ::
N 4 Neeoooooood Niiiiiiii
1

/SIIIIIIINY R d"'.\

1 1 1 Structure 11

H ooP :: |1 Programming o

g — 1! Approach

1 CHtdava, i€ ik PP ::

1 1 Python, PHP, 1} L Cand N

. c# g i PASCAL |,

N\ m - -/ Ve e /

Figure 1. Evolution of Object-Oriented Programming Languages

ISSN: 2456-883X OPEN @ ACCESS

12

AST Asian Journal of Applied Science and Technology (AJAST)

EXCELLENCE THROUGH RESEARCH \Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

According to Pandey (2015) and Ashok (2024), the development of Simula language which introduced
foundational concepts such as classes, objects and inheritance, lay the ground for object-oriented programming.
However, Fernado (2002), Nenad (2023) and Liamas (2025) agree to this belief that this was the precursor to
Object-Oriented programming. Simula, according to them, was the first programming language that had objects and
classes as central concepts. It was initially developed as a language for programming discrete-event simulations,
and objects in the language were used to model entities in the real-world application that was being simulated they

maintained.

Fernando (2002), Nenad (2023) and Liamas (2025) were of the view that despite the early innovation of Simula, the
term “object-oriented” became prominent from Smalltalk. Though they maintained that Smalltalk language, first
developed in 1972, in the Learning Research Group at Xerox Palo Alto Research Center (PARC), was greatly
influenced by Simula as well as by LISP. Smalltalk was the software half of an ambitious project known as the

Dynabook, which was intended to be a powerful personal computer.

Research on Smalltalk has continued and the Smalltalk language and the environment were by-products of that
project Goldberg et al. (1993). From Smalltalk, some common concepts and ideas were identified and they gave
support, at least informally, to the object-oriented paradigm. Because of the evolution and dissemination of
programming languages like Smalltalk, this new paradigm evolved, and new languages, methodologies, and tools
appeared.

In the 1980s, B. Jarne, at ATT Bell Labs, built upon the concept of Simula by adding new features thereby making
it a powerful and versatile language — thus, C++ was birthed Nenad, (2023); Liamas (2025). Apple, at the same
time, developed the Object Pascal which brought object-oriented programming to the Apple Macintosh platform,

thereby expanding its reach and popularity as claimed by Wirth (1971).

The 1990s saw the emergence of two adopted OOP languages - Java and C#. Java, developed by James Gosling at
Sun Microsystems, due to its platform independence and robust features, gained huge popularity. The C#,
developed by Anders Hejlsberg at Microsoft, offered a familiar syntax for window-based development by
combining elements of C++ and Java. However, the two languages played a key role in mainstreaming OOP and

Shaping the software industry Nenad (2023).

In 2000, other dynamic and interpreted languages such as Python, Ruby, PHP, JavaScript etc. were introduced and
they were widely adopted by developers due to their simplicity and versatility — offering an intuitive OOP

experience.

Ruby, on its part, introduced innovative concepts like blocks, mixing, and concise syntax. PHP, Java and Swift
embraced OOP principles and today, OOP continues to advance and adapt to meet the growing needs of software

development.
(a) Historical Foundations and Early Integrations

The history of programming paradigms establishes the groundwork for understanding how OOP and Al converged.

Early Al systems in the 1960s and 1970s used procedural and symbolic approaches; however, the growth of

ISSN: 2456-883X OPEN @ ACCESS

12

AST Asian Journal of Applied Science and Technology (AJAST)

EXCELLENCE THROUGH RESEARCH \Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

software complexity quickly revealed the need for better modularization. The advent of Simula and Smalltalk
introduced objects, encapsulation, and message passing, concepts subsequently used to model intelligent agents and
complex simulations. Works such as Goldberg & Robson (1983) and Dahl et al. (1972) document these transitions.
Researchers began to explore object-oriented extensions for Al languages (e.g., OO LISP variants and frame-based
systems), providing the first tangible demonstrations of combining OOP with Al concepts. Further elaboration and

supporting discussion highlight practical.
(b) OOP Principles Applied to Al Architectures

Encapsulation, inheritance, polymorphism, and abstraction map naturally to machine learning model components:
encapsulation houses data pipelines and model weights; inheritance supports reusable neural network components
and transfer learning; polymorphism enables algorithms to conform to a shared interface (e.g., 'fit' and 'predict’);
abstraction eases the separation of model definition from training and deployment concerns. Modern frameworks
(TensorFlow, PyTorch, scikit-learn) expose class-based APIs that reflect these OOP principles, facilitating readable
and maintainable Al codebases. Further elaboration and supporting discussion highlight practical examples,
theoretical implications, and developer-centric observations. Further elaboration and supporting discussion
highlight practical examples, theoretical implications, and developer-centric observations.

(c) Agent-Oriented Design and Intelligent Objects

Agent-oriented programming represents a particular synthesis where objects possess autonomy, goal-directed
behaviors, and message-driven interactions. This paradigm excels in distributed Al systems and simulations. Agent
frameworks such as JADE and SPADE implement object-like agents, often integrating planning, decision-making,
and learning subsystems as modular components. Empirical studies within multi-agent systems (MAS) show that
object-oriented design reduces coupling and improves testability when integrating learning agents. Further
elaboration and supporting discussion highlight practical examples, theoretical implications, and developer-centric
observations. Further elaboration and supporting discussion highlight practical examples, theoretical implications,

and developer-centric observations.
(d) Model-Centric vs. Data-Centric Al and OOP

Recent debates in Al engineering contrast model-centric and data-centric approaches. OOP systems assist by
providing clear abstractions for data validation, feature engineering, and transformation pipelines—often
implemented as classes that encapsulate preprocessing logic. This separation enables teams to iterate on data
without modifying core model code, aligning with data-centric Al principles advocated by practitioners. Further
elaboration and supporting discussion highlight practical examples, theoretical implications, and developer-centric
observations. Further elaboration and supporting discussion highlight practical examples, theoretical implications,

and developer-centric observations.
(e) Al-Assisted Software Engineering and OOP

Tools such as GitHub Copilot, TabNine, and other code-completion systems demonstrate how Al augments the

software development lifecycle. These tools learn from large corpora and often recommend object interfaces,

ISSN: 2456-883X OPEN @ ACCESS

12

AST Asian Journal of Applied Science and Technology (AJAST)

EXCELLENCE THROUGH RESEARCH \Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

suggesting class and method scaffolding that adhere to established design patterns. Studies indicate that Al
suggestions can accelerate development but require careful human oversight to ensure correctness and security.
Further elaboration and supporting discussion highlight practical examples, theoretical implications, and
developer-centric observations. Further elaboration and supporting discussion highlight practical examples,

theoretical implications, and developer-centric observations.
3. Methodology

In this research we adopted the qualitative research methodology. This method includes focus groups, scholarly

works, group discussion, observation and the internet.
27 4. Result and Discussion

Several findings emerged about the benefits of integrating Object Oriented Programming and Artificial Intelligence

in software development including:

Enhanced System Capabilities: Al integration with Object-Oriented Programming based systems add intelligence
to the systems, enabling them to learn, adapt and evolve. Examples of this can be shown in e-commerce where Al
enhances systems to understand customer behavior and predict future needs, moving beyond simple product
recommendations.

Healthcare: Where Al-powered Object-Oriented Programming objects representing patients can analyze medical

data and real-time vitals, potentially saving lives and time.

Industry: Combining Object-Oriented Programming, Al and loT, systems can optimize machinery, predict failures,

and minimize downtime.

Agentic Systems: This is also a product of integration of Object-Oriented Programming and Al. The rise in this type
of systems, which demonstrates autonomous capabilities, is transforming various fields. These systems can

understand project context, suggest improvements, and even handle tasks like bug reports a feature requests.

Al Assisted Coding: Integration of Al and Object-Oriented Programming is also significantly impacting software
development, with tools like GitHub Copilot providing code suggestions and automating repetitive tasks, thereby
boosting developer productivity. Also, automated code generation, powered by Al, helps create reliable, bug-free

code.

Al Programming Languages: Object-Oriented Programming Languages like Java, python, C++ etc., are playing
important roles in the field of Al Programming. Al algorithms can understand and generate programming languages
efficiently reducing manual mistakes and increasing overall productivity. Rekha (2013) claims that intersection of
programming languages and Al development improves tasks like machine learning and data analysis. Al-powered
predictive models can spot system vulnerabilities and recommend appropriate alignments to improve security.

Al-driven testing tools enhance quality assurance by identifying and resolving issues that human testing could miss.

Other milestones of combining object-oriented programming and Artificial intelligence in system development

according to many researchers include:

ISSN: 2456-883X OPEN @ ACCESS

12

AST Asian Journal of Applied Science and Technology (AJAST)

EXCELLENCE THROUGH RESEARCH \Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

i. Increased efficiency: Artificial intelligence powered tools and automation reduce development time and efforts.
ii. Enhanced maintainability: OOP make Al systems easier to understand, modify and extend.
iii. Greater flexibility and Adaptability: OOP allows for easy integration of new Al techniques and functionalities.

iv. Innovation: The combination of OOP and Al fosters new possibilities and advancements in software

development.

v. Improved functionality: Integrating Al and OOP in software development adds advanced functionality to

software applications such as natural language processing, computer vision and predictive analysis.

vi. Better decision: Al combined with OOP can help software analyze large amounts of data and make decisions

based on the data, which can lead to more informed and accurate decision making.

vii. Improved user experience: Al with OOP creates more interfaces, making software more accessible and easier

to use.

This extended results and discussion synthesizes findings across domains and highlights patterns observed in the
literature and industry reports. First, modular object designs reduce the cost of integrating new models by
decoupling model definition from feature processing. Second, object interfaces standardize how components
communicate with model serving layers and microservices. Third, when OOP designs are paired with robust CI/CD
pipelines and model governance, organizations achieve faster iteration cycles and safer deployments. The following

sections present domain-specific findings.
A. Healthcare

In healthcare, object-oriented representations of patient records, monitoring devices, and predictive models allow
systems to integrate streaming data, apply patient-specific models, and produce explainable recommendations.
Clinical decision support systems using object abstractions have demonstrated improved integration with EHRS.
Case studies indicate measurable improvements in performance and maintainability when Al modules are
encapsulated within object models. Case studies indicate measurable improvements in performance and

maintainability when Al modules are encapsulated within object models.
B. Finance

In finance, modular Al components for risk scoring and anomaly detection are deployed as services behind object
interfaces, enabling composability and regulatory auditing. Case studies indicate measurable improvements in
performance and maintainability when Al modules are encapsulated within object models. Case studies indicate
measurable improvements in performance and maintainability when Al modules are encapsulated within object

models.
C. Autonomous Systems

Autonomous vehicles and robotics rely on layered object architectures where perception, planning, and control
modules interact via well-defined interfaces. Al components such as perception models can be hot-swapped

without rewriting higher-level control logic. Case studies indicate measurable improvements in performance and

ISSN: 2456-883X OPEN @ ACCESS

12

AST Asian Journal of Applied Science and Technology (AJAST)

EXCELLENCE THROUGH RESEARCH \Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

maintainability when Al modules are encapsulated within object models. Case studies indicate measurable

improvements in performance and maintainability when Al modules are encapsulated within object models.
D. Education Technology

In EdTech, intelligent tutoring systems built with object-oriented designs encapsulate student models, content units,
and assessment engines to personalize learning. Case studies indicate measurable improvements in performance
and maintainability when Al modules are encapsulated within object models. Case studies indicate measurable

improvements in performance and maintainability when Al modules are encapsulated within object models.
5. Practical Patterns and Design Recommendations
A. Factory and Builder Patterns

Use factory and builder patterns to instantiate model pipelines and pre-configured objects for reproducible
experiments.

B. Adapter and Facade Patterns
Use adapters and facades to unify interfaces when integrating legacy systems with modern Al services.
C. Strategy Pattern

Expose interchangeable algorithms (e.g., different training strategies) behind a common interface to enable runtime
selection.

D. Observer Pattern

Implement observer patterns for monitoring model drift and triggering retraining workflows.

E. Repository Pattern

Abstract data access into repositories that manage persistence and versioning for datasets and models.
:6. Ethics, Explainability, and Governance

As OOP and Al integration becomes more widespread, governance surrounding model transparency, bias
mitigation, and accountability must be embedded in system design. Object models can incorporate auditing hooks,
provenance metadata, and explainability interfaces that standardize how predictions are logged and explained.
Practitioners should design objects that carry contextual metadata and expose explainable endpoints for
downstream consumers and regulators. Regulatory compliance (e.g., GDPR, HIPAA) often requires systems to
provide explainability and data lineage, which are best managed through deliberate object-level metadata and audit
trails. Regulatory compliance (e.g., GDPR, HIPAA) often requires systems to provide explainability and data

lineage, which are best managed through deliberate object-level metadata and audit trails.
#7. Conclusion

This study critically looked into how the frontier of software development is/can be advanced by integrating

object-oriented programming and Artificial intelligence. The study revealed that integrating Object-Oriented

ISSN: 2456-883X OPEN @ ACCESS

X

T Asian Journal of Applied Science and Technology (AJAST)
EXCELLENCE THROUGH RESEARCH Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

Programming and Atrtificial Intelligence offers powerful approach to building intelligent and effective software
systems. Object-Oriented Programming Provides the structure and organization needed for complex Systems, while
Artificial Intelligence enhances the development of intelligent systems by leveraging the modularity and reusability
of Object-Oriented design, leading to more robust, Maintainable, scalable and innovative software systems.

©78. Future Suggestions

Key avenues for future research include:

1) Developing standardized object interfaces for model interchangeability.

2) Creating formal verification methods for Al-infused object behaviors.

3) Exploring hybrid paradigms that combine functional programming, OOP, and model-centric approaches.
4) Designing educational curricula that teach object-oriented Al engineering principles.

5) Evaluation benchmarks that measure maintainability, explainability, and performance for OOP-Al systems will
be critical for progress.

These research directions underpin an agenda for both academic inquiry and pragmatic tooling improvements.

These research directions underpin an agenda.

In conclusion, integrating OOP and Al offers a powerful approach to building intelligent and efficient software
systems. OOP provides the structure and organization needed for complex Al systems, while Al enhances the

development process itself, leading to more robust, maintainable and innovative solution.

ISSN: 2456-883X OPEN (ACCESS

X

AST Asian Journal of Applied Science and Technology (AJAST)
EXCELLENCE THROUGH RESEARCH Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

ISSN: 2456-883X OPEN (ACCESS

X

AST Asian Journal of Applied Science and Technology (AJAST)
EXCELLENCE THROUGH RESEARCH Volume 9, Issue 4, Pages 01-11, Oct-Dec 2025

ISSN: 2456-883X OPEN (ACCESS

