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ABSTRACT

1. Introduction

Let M be an n-dimensional connected Riemannian manifold with Riemannian metric g. Let Rihjk (resp. R;j , R)

be the components of Riemannian curvature tensor (resp. The Ricci tensor, The scalar curvature) of the manifold

M. Let us consider in M" an infinitesimal transformation
(1.1) Xt = xt + &6,

Where ¢! is a vector field in M". We denote by £ the Lie derivative with respect to é¢. The transformation

(1.1) is a projective transformation if and only if
(12) EL} = 8/pi + 8ip;

Where p; is a gradient. If p; (1.2) is zero, then the infinitesimal transformation (1.1) is an affine one. Again, if (1.1)

is a conformal transformation if and only if
(1.3) £gij = ¢9ij
Where ¢ is a non-constant function of x’s and it is a motion when ¢ in (1.3) is zero.

In 1962, M. Prvanovitch [6] studied infinitesimal projective and conformal transformations in recurrent and
Ricci-recurrent Riemannian spaces. In 1966, W. Roter [9] and again, in 1983, R.K. Garai and H. Sen [3] studied
this type of transformations.

In this paper we have studied infinitesimal projective and conformal transformations on projective curvature tensor,

W,-curvature tensor, conharmonic curvature tensor and Weyl conformal curvature tensor.
2 2. Infinitesimal Projective Transformations

If M" admits a non-affine infinitesimal projective transformation for which

El;llc = 6jipk + 51in
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Then we have the following [10]:

(2.1) £Rihjk = 6]'hpi,k - 51?171',]',

(2.2) £ER;j = (1 —n)py; ,

(2.3) £P[ =0,

Where I is the Christoffel symbol of g;; and P is the projective curvature tensor i.e. [2]

1
(2.4) Pi}jl'k = Rihjk b (6 Rij — 5thik)

In 1970 G. P. Pokhariyal and R. S. Mishra [5] introduced the notion of a new curvature tensor, denoted by W, and
studied its relativistic significance. TheW,-curvature tensor of type (1,3) is defined by

(25) (W)l = Rl + = (OFRi; — 8/'Ry)

Taking the Lie derivative with respect to the field & to the above, we have
(2.6) E(W)N, = ERE, + ﬁ (SRER;; — SMERy,)

Using (2.1) and (2.2) in (2.6), we get

(2.7) E(Wz)g‘k =68!"Djx — Opij

If piis parallel in M", i.e., pi;=0, then from above we have £(W2)?jk = 0.
Again if £(W2){;-k = 0 then from (2.7) we have

8/'Djk — 6kpij =0

Contracting hand k in above, we obtain

(1-n)p;; =0

i.e., piis parallel.

Hence we can state the following:

Theorem 2.1. If a M™ admits an infinitesimal projective transformation (1.1) for which
£k = 8/py + 6ipj, then E£(W,)JY, = 0 if and only if p; is parallel in M™.

The conformal curvature tensor of type (1.3) is defined by
1 R
(28)  Cijx = Rij = 7= (B¢ Rij — 6 Rue + Ricgi; — R} 9ux) — Gy oy (O 917 — 87 9k)

As a special subgroup of the conformal transformation group, Y. Ishii [4] introduced the notion of the

conharmonic transformation under which a harmonic function transforms into a harmonic function. The

conharmonic curvature tensor Cof type (1,3) on a Riemannian manifold (M",g), (n>3), (this condition is

assumed as for n= 3 the Weyl conformal tensor vanishes) is given by

ISSN: 2456-883X OPEN @ ACCESS




12

As.l. Asian Journal of Applied Science and Technology (AJAST)
EXCELLENCE THROUGH RESEARCH Volume 7, Issue 2, Pages 225-230, ApriI-June 2023
= 1
(2.9) Clite = Rl — — (88 Rij — 8/'Ru + Rigij — R gu).

Taking the Lie derivative with respect to the field & to the above, we have

= 1
(2.10) £Cl = £Rfy, — p— [6RER;j — 8MERy + £E(R i) — E(Rgur)].

If £C}) = 0, then from (2.10) we have
(211)  £RMy = ——[SLERy; — 8/'ERy + E(Rgyj) — E(Rgu)]
Using (2.1) and (2.2) in (2.11), we get

8k — i1 = EREGi) — E(R gix)

Contracting h and k in above and using (2.2), we obtain

£(Rgij) = 0.

Again, if £(Rg;j) =0.

Then from (2.10), we haveECi’]‘- = 0. Hence we have the following:

Theorem 2.2. If a M™ admits an infinitesimal projective transformation (1.1) for which
£} = 8/py + 64p;, then E£CP4, = 0ifand only if £(Rg;;) = 0.

If £Ci’]‘- = 0, (2.11) holds. Now taking the Lie derivative of (2.8) and using (2.11). We have

1
(212)  £Cly = m[[&?f(Rgij) — [8}£(Rgu) ]
Since £C_l-’]l-k =0 ifandonlyif £(Rg;;) = 0. From (2.12) we have
£Cly = 0.
Theorem 2.3. If a M™ admits an infinitesimal projective transformation (1.1) for which

£F} = &/px + 84p;, then the following conditions are equivalent:

(M £C_'i’}k =0

(i) £(Rgij) =0

(i) £Cl = 0.

3. Infinitesimal Conformal Transformations

If M" admits an infinitesimal conformal transformation for which £g;; = 2¢g;; , then we have [10]:
(1) £ = &lok + 6o; — @'g;

32  £gY=-20¢gY
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and

(83) £R!y = 8lgi — 610+ 0"gu — 0k gy
Contracting h and k in (3.3), we have

(B4) £g;;,=Q2-n)6kei; — ¢Lgij

From (3.2) and (3.4), it follows that

(35) £R =£gYR;; = —2[pR + (n — )¢}

and

(3.6) £R} = £gRy; = —2R} + (2 — n)g'; — &},

In an infinitesimal conformal transformation, £C"

(2.8).

ijk = 0, where C is the Weyl conformal curvature tensor given in

Also in an infinitesimal conformal transformation, EPUk 0, where P is the projective curvature tensor

given in (2.4).
Now taking the Lie derivative with respect to the field & to the equation (2.5), we get

(387) EWp)li = ERYy +— (6P ERy — 6]'€Ry,)

l]k

If £(W2)”k 0, then from above we get

£RI (5’l£le SMERy) =0

l]k

By using (3.3) and (3.3) to the above, we get

2— 1
8 i — Sk oij + ohgu — 0hgij = (5 ik = O Pipe + ——7 (&' @leguc = 6P jn)

Contracting h and k to the above, we obtain
(2 —n)e;; = ¢%gij, which implies
2t
Pij = ;7 PtYij-
Againif ¢; ; = ﬁ(pftgij , then from (3.7), and by using (3.3) and (3.3), we get
E(W)M = 0.
Hence we can state the following:

Theorem 3.1. If a M™ admits an infinitesimal projective transformation (1.1) for which
EI;;c = 5ji</’k + 8,0, — ¢'gij , then E(Wz)z]k =
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. 2
If and only if ¢; ; = E(pftgij .
Applying the Lie derivative with respect to the vector field &'to (2.9), we obtain
~ 1
(3.8) £C[ = £RY, — p— [67ER;j — 8! ERy + E(RE i) — ER gur)].
If £C[}) = 0, then from above

(39) ERMy = —[6RERy — 6]'ERy + E(RI i) — £(RI guo)].
By using (3.2)-(3.6) in (3.9), we get

(3.10)  &'¢ix —kwij + @hgu — 0lhgi)

= ﬁ [6r(2 — ) — 67 ptgij — 5jh(z —n)@; + 5jhfp,ttgik

+Ri£g;; + giER) — th£gik + giRERJh

+ (2 -n)ohgi; + 6709 — 2 -1 g — 0% gu].

Again contracting h and k, we get

(311) (2 —n)gy; — @hgy = 2 —n)ps; — 2 tgi; . which implies

9ij = 0.

Again, if we take qoftgij = 0, then by using (3.2)-(3.6), we get from (3.8), £C_l-’} =0.
This leads to the following:

Theorem 3.2. If a M™ admits an infinitesimal projective transformation (1.1) for which
Gk = 8}y + SLp; — ¢'gj, then £Cf5y = 0 ifand only if ¢%g;; = 0.

“74. Ricci Soliton under Infinitesimal Conformal Transformation

In, 1982, Hamilton [1] introduced the notion of Ricci flow to find a canonical metric on a smooth manifold. Then
Ricci flow has become a powerful tool for the study of Riemannian manifolds, especially for those manifolds with
positive curvature. Perelman ([7], [8]) used Ricci flow and its surgery to prove Poincare conjecture. The Ricci flow

is an evolution equation for metrics on a Riemannian manifold defined as follows:
8g::(t) = —2R;;
5tYij - ij

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution to the Ricci flow is called
Ricci soliton if it moves only by a one parameter group of diffeomorphism and scaling. A Ricci soliton (g, 7,1)

on a Riemannian manifold (M,q) is a generalization of an Einstein metric such that [1]
(41) £yg+25+21g=0.

If a M" admits am infinitesimal conformal transformation then £g =2¢g. Putting in (1.1) we get
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(42) S=—(pg+219).

That is the manifold is Einstein. Thus we have the following:

Asian Journal of Applied Science and Technology (AJAST)

Theorem 4.1. Let the metric of a Riemannian manifold is Ricci soliton. If the manifolds admit an infinitesimal

conformal transformation, then the manifold is Einstein.

Corollary 4.1. Let the metric of a Riemannian manifold is Ricci soliton. If the manifolds admit an

infinitesimal conformal transformation, then the function ¢ is constant.

Where S is the Ricci tensor, £y is the Lie derivative operator along the vector field V.
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